Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019135

RESUMO

The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1ß and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Camundongos , Neuritos/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Diabetes ; 68(11): 2049-2062, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31439647

RESUMO

Disruption of the adaptor protein SH2B1 (SH2-B, PSM) is associated with severe obesity, insulin resistance, and neurobehavioral abnormalities in mice and humans. Here, we identify 15 SH2B1 variants in severely obese children. Four obesity-associated human SH2B1 variants lie in the Pleckstrin homology (PH) domain, suggesting that the PH domain is essential for SH2B1's function. We generated a mouse model of a human variant in this domain (P322S). P322S/P322S mice exhibited substantial prenatal lethality. Examination of the P322S/+ metabolic phenotype revealed late-onset glucose intolerance. To circumvent P322S/P322S lethality, mice containing a two-amino acid deletion within the SH2B1 PH domain (ΔP317, R318 [ΔPR]) were studied. Mice homozygous for ΔPR were born at the expected Mendelian ratio and exhibited obesity plus insulin resistance and glucose intolerance beyond that attributable to their increased adiposity. These studies demonstrate that the PH domain plays a crucial role in how SH2B1 controls energy balance and glucose homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adiposidade/genética , Metabolismo Energético/genética , Resistência à Insulina/genética , Obesidade Infantil/genética , Domínios de Homologia à Plecstrina/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Obesidade Infantil/metabolismo
3.
Mol Cell Biol ; 38(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29229648

RESUMO

The scaffold protein SH2B1, a major regulator of body weight, is recruited to the receptors of multiple cytokines and growth factors, including nerve growth factor (NGF). The ß isoform but not the α isoform of SH2B1 greatly enhances NGF-dependent neurite outgrowth of PC12 cells. Here, we asked how the unique C-terminal tails of the α and ß isoforms modulate SH2B1 function. We compared the actions of SH2B1α and SH2B1ß to those of the N-terminal 631 amino acids shared by both isoforms. In contrast to the ß tail, the α tail inhibited the ability of SH2B1 to both cycle through the nucleus and enhance NGF-mediated neurite outgrowth, gene expression, phosphorylation of Akt and phospholipase C-gamma (PLC-γ), and autophosphorylation of the NGF receptor TrkA. These functions were restored when Tyr753 in the α tail was mutated to phenylalanine. We provide evidence that TrkA phosphorylates Tyr753 in SH2B1α, as well as tyrosines 439 and 55 in both SH2B1α and SH2B1ß. Finally, coexpression of SH2B1α but not SH2B1α with a mutation of Y to F at position 753 (Y753F) inhibited the ability of SH2B1ß to enhance neurite outgrowth. These results suggest that the C-terminal tails of SH2B1 isoforms are key determinants of the cellular role of SH2B1. Furthermore, the function of SH2B1α is regulated by phosphorylation of the α tail.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Crescimento Neural/metabolismo , Animais , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuritos , Células PC12 , Fosforilação , Domínios Proteicos , Isoformas de Proteínas , Ratos , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
4.
Endocrinology ; 155(9): 3219-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24971614

RESUMO

We have previously reported rare variants in sarcoma (Src) homology 2 (SH2) B adaptor protein 1 (SH2B1) in individuals with obesity, insulin resistance, and maladaptive behavior. Here, we identify 4 additional SH2B1 variants by sequencing 500 individuals with severe early-onset obesity. SH2B1 has 4 alternatively spliced isoforms. One variant (T546A) lies within the N-terminal region common to all isoforms. As shown for past variants in this region, T546A impairs SH2B1ß enhancement of nerve growth factor-induced neurite outgrowth, and the individual with the T546A variant exhibits mild developmental delay. The other 3 variants (A663V, V695M, and A723V) lie in the C-terminal tail of SH2B1α. SH2B1α variant carriers were hyperinsulinemic but did not exhibit the behavioral phenotype observed in individuals with SH2B1 variants that disrupt all isoforms. In in vitro assays, SH2B1α, like SH2B1ß, enhances insulin- and leptin-induced insulin receptor substrate 2 (IRS2) phosphorylation and GH-induced cell motility. None of the variants affect SH2B1α enhancement of insulin- and leptin-induced IRS2 phosphorylation. However, T546A, A663V, and A723V all impair the ability of SH2B1α to enhance GH-induced cell motility. In contrast to SH2B1ß, SH2B1α does not enhance nerve growth factor-induced neurite outgrowth. These studies suggest that genetic variants that disrupt isoforms other than SH2B1ß may be functionally significant. Further studies are needed to understand the mechanism by which the individual isoforms regulate energy homeostasis and behavior.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Obesidade/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Processamento Alternativo , Criança , Feminino , Humanos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Mutação de Sentido Incorreto , Obesidade/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Adulto Jovem
5.
Mol Biol Cell ; 22(7): 988-98, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289090

RESUMO

As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.


Assuntos
Proteômica , Saccharomyces cerevisiae/fisiologia , Ciclo Celular/fisiologia , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Consumo de Oxigênio , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Biol Cell ; 19(3): 1271-80, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18199684

RESUMO

Cells in glucose-limited Saccharomyces cerevisiae cultures differentiate into quiescent (Q) and nonquiescent (NQ) fractions before entering stationary phase. To understand this differentiation, Q and NQ cells from 101 deletion-mutant strains were tested for viability and reproductive capacity. Eleven mutants that affected one or both phenotypes in Q or NQ fractions were identified. NQ fractions exhibit a high level of petite colonies, and nine mutants affecting this phenotype were identified. Microarray analysis revealed >1300 mRNAs distinguished Q from NQ fractions. Q cell-specific mRNAs encode proteins involved in membrane maintenance, oxidative stress response, and signal transduction. NQ-cell mRNAs, consistent with apoptosis in these cells, encode proteins involved in Ty-element transposition and DNA recombination. More than 2000 protease-released mRNAs were identified only in Q cells, consistent with these cells being physiologically poised to respond to environmental changes. Our results indicate that Q and NQ cells differentiate significantly, with Q cells providing genomic stability and NQ cells providing nutrients to Q cells and a regular source of genetic diversity through mutation and transposition. These studies are relevant to chronological aging, cell cycle, and genome evolution, and they provide insight into complex responses that even simple organisms have to starvation.


Assuntos
Diferenciação Celular , Saccharomyces cerevisiae/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Frações Subcelulares/efeitos dos fármacos
7.
Med Hypotheses ; 63(4): 681-3, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15325016

RESUMO

The endogenous affective disorders have been postulated to be due to the neurotransmitter theories, even though there is increasing evidence of a timing abnormality. Recently, action potential (AP) speed differentials and resulting AP dyscorrelation have been postulated for the bipolar disorders. This AP dyscorrelation path is extended here to include some of the other affective disorders. The genetic studies have confirmed loci and proteins which probably predispose to increased water compartmentalization differentials. Indeed, higher water compartmentalization differentials have been confirmed in affective phenotypes. Electrophysiological measures have consistently suggested AP dyscorrelation in patients and more recently in "unaffected" carriers. Future studies should use genotyped subjects and manipulations to investigate possible manipulation-induced water compartmentalization changes and AP speed changes.


Assuntos
Potenciais de Ação , Encéfalo/fisiopatologia , Ácidos Graxos Essenciais/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Modelos Neurológicos , Transtornos do Humor/fisiopatologia , Água/metabolismo , Eletroencefalografia/métodos , Humanos , Condução Nervosa , Estatística como Assunto , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...